Optimal motion planning for nonholonomic systems using genetic algorithm with wavelet approximation

نویسندگان

  • Xin-Sheng Ge
  • Li-Qun Chen
چکیده

An optimal motion planning scheme using genetic algorithm with wavelet approximation is proposed for nonholonomic systems. The motion planning of nonholonomic systems can be formulated as an optimal control of a driftfree system. A cost function is introduced to incorporate the control energy and the final state errors. The control inputs are determined to minimize the cost functional. By using the method of wavelet, the infinite-dimensional optimal control problem is truncated to a finite-dimensional one based on the wavelet bases. The genetic algorithm is employed to solve a feasible trajectory satisfying nonholonomic constraints. The proposed scheme is applied to a free-floating robot consisting of two one-link arms connected to a main base via revolute joints. The numerical results demonstrate that the genetic algorithm with the wavelet approximation is an effective approach to steer a nonholonomic system from its initial state to its final state. 2006 Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonholonomic motion planning for a free-falling cat using spline approximation

An optimal motion planning of a free-falling cat based on the spline approximation is investigated. Nonholonomicity arises in a free-falling cat subjected to nonintegrable velocity constraints or nonintegrable conservation laws. The equation of dynamics of a free-falling cat is obtained by using the model of two symmetric rigid bodies. The control of the system can be converted to the motion pl...

متن کامل

On certain hyperelliptic signals that are natural controls for nonholonomic motion planning

In this paper we address the general problem of approximating, in a certain optimal way, non admissible motions of a kinematic system with nonholonomic constraints. Since this kind of problems falls into the general subriemannian geometric setting, it is natural to consider optimality in the sense of approximating by means of subriemannian geodesics. We consider systems modeled by a subriemanni...

متن کامل

An Approximate Algorithm for Nonholonomic Motion Planning

We present a steering algorithm for general nonholonomic systems which are not required to possess special properties such as flatness or exact nilpotentizability. The method makes use of local steering laws, with suitable contraction properties, designed on the basis of a continuous approximation of the system.

متن کامل

Dynamics and Motion Control of Wheeled Robotic Systems

Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...

متن کامل

Steering Nonholonomic Systems via Nilpotent Approximations: The General Two-Trailer System

Existing methods for nonholonomic motion planning can only be applied to exactly nilpotentizable or flat systems. For nonholonomic systems that do not fall into the above classes, we conjecture that globally defined nilpotent approximations will allow the synthesis of efficient steering and stabilization strategies. In this paper, a car towing two off-hooked trailers is considered as a case stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2006